Multiple testing of local maxima for detection of peaks in 1D
نویسندگان
چکیده
منابع مشابه
Multiple Testing of Local Maxima for Detection of Peaks in 1d By
A topological multiple testing scheme for one-dimensional domains is proposed where, rather than testing every spatial or temporal location for the presence of a signal, tests are performed only at the local maxima of the smoothed observed sequence. Assuming unimodal true peaks with finite support and Gaussian stationary ergodic noise, it is shown that the algorithm with Bonferroni or Benjamini...
متن کاملMultiple Testing of Local Maxima for Detection of Peaks in 1d.
A topological multiple testing scheme for one-dimensional domains is proposed where, rather than testing every spatial or temporal location for the presence of a signal, tests are performed only at the local maxima of the smoothed observed sequence. Assuming unimodal true peaks with finite support and Gaussian stationary ergodic noise, it is shown that the algorithm with Bonferroni or Benjamini...
متن کاملMultiple Testing of Local Maxima for Detection of Unimodal Peaks in 1D
A topological multiple testing scheme for one-dimensional domains is proposed where, rather than testing every spatial or temporal location for the presence of a signal, tests are performed only at the local maxima of the smoothed observed sequence. Assuming unimodal true peaks with finite support and Gaussian stationary ergodic noise, it is shown that the algorithm with Bonferroni or Benjamini...
متن کاملMultiple Testing of Local Maxima for Detection of Peaks in Chip-seq Data.
A topological multiple testing approach to peak detection is proposed for the problem of detecting transcription factor binding sites in ChIP-Seq data. After kernel smoothing of the tag counts over the genome, the presence of a peak is tested at each observed local maximum, followed by multiple testing correction at the desired false discovery rate level. Valid p-values for candidate peaks are ...
متن کاملextremal region detection guided by maxima of gradient magnitude
a problem of computer vision applications is to detect regions of interest under dif- ferent imaging conditions. the state-of-the-art maximally stable extremal regions (mser) detects affine covariant regions by applying all possible thresholds on the input image, and through three main steps including: 1) making a component tree of extremal regions’ evolution (enumeration), 2) obtaining region ...
ذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Annals of Statistics
سال: 2011
ISSN: 0090-5364
DOI: 10.1214/11-aos943